奔腾4装win10_奔腾四电脑系统
1.电脑为联想PENTIUM 4 3。06GHZ 显卡FX5200 ,内存1G可以装WINDOWS98SE吗
2.奔腾汽车电脑进哪个车型系统
3.谁能告诉我奔腾4的发展历史
4.奔腾4:全球最快微处理器
5.奔腾4简介及详细资料
通常在微机中标明的p4或奔腾四是指如下:
通常在微机中标明的P4或奔腾四是指计算机的处理器(CPU)的型号。
P4和奔腾四都是指Intel公司生产的奔腾系列处理器。奔腾四处理器是Intel在1999年推出的,它采用了全新的NetBurst架构,旨在提供高性能、多用途和智能化的处理器,以满足不断增长的计算需求。
奔腾四处理器的核心是NetBurst架构,它采用了超线程技术,可以在一个时钟周期内执行两个指令,从而提高了处理器的整体性能。此外,奔腾四处理器还采用了高速缓存技术,以提高处理器的速度和响应能力。
P4是指奔腾四处理器的第一代产品,它采用了100MHz的FSB(前端总线)和200MHz的CPU频率,并配备了1MB的二级缓存。后来,Intel又推出了P4的第二代产品,即Pentium 4-M和Pentium 4,它们采用了133MHz的FSB和512KB的二级缓存,进一步提高了处理器的性能。
随着技术的发展和Intel公司的不断改进,现在我们已经有了更先进的处理器,比如Intel Core i7、i5等,但是P4和奔腾四处理器作为计算机发展史上的重要里程碑,仍然具有重要意义。
电脑为联想PENTIUM 4 3。06GHZ 显卡FX5200 ,内存1G可以装WINDOWS98SE吗
一、实现1个电脑分享器用户独立、同时操作、使用一台主机的最优系统配置:
CPU在英特尔奔腾4 1.3GHz或以上
内存至少256MB或以上
硬盘要求转速7200RPM或以上
操作系统:Windows 2000 Pro、Windows XP HOME、Windows XP Pro或以上
二、实现2-3个电脑分享器用户独立、同时操作、使用一台主机的最优系统配置:
CPU在英特尔奔腾4 2.4GHz或以上
内存至少512MB或以上
硬盘要求转速7200RPM或以上
操作系统:Windows 2000 Pro、Windows XP HOME、Windows XP Pro或以上
三、实现4-6个电脑分享器用户独立、同时操作、使用一台主机的最优系统配置:
CPU在英特尔奔腾4 2.8GHz或以上
内存至少768MB或以上
硬盘要求转速7200RPM或以上
操作系统:Windows 2000 Pro、Windows XP HOME、Windows XP Pro或以上
四、实现7-10个电脑分享器用户独立、同时操作、使用一台主机的最优系统配置:
CPU在英特尔奔腾4 3.0GHz或以上
内存在1GB或以上
硬盘要求转速7200RPM或以上
操作系统:Windows 2000 Pro、Windows XP HOME、Windows XP Pro或以上
五、实现11-13个电脑分享器用户独立、同时操作、使用一台主机的最优系统配置:
CPU在英特尔奔腾4 3.2GHz或以上
内存在2GB或以上
硬盘要求转速7200RPM或以上
操作系统:Windows 2000 Server、Windows 2003 Server或以上
六、实现14-20个电脑分享器用户独立、同时操作、使用一台主机的最优系统配置:
XEON(至强) 2.8GHz - XEON(至强) 双2.0GHz以上
内存在3GB或以上
硬盘要求转速10000RPM或以上
操作系统:Windows 2000 Server、Windows 2003 Server或以上
七、实现21-32个电脑分享器用户独立、同时操作、使用一台主机的最优系统配置:
XEON(至强) 双2.4GHz - XEON(至强) 双2.8GHz以上
内存在4GB或以上
硬盘要求转速10000RPM或以上
操作系统:Windows 2000 Server、Windows 2003 Server或以上
奔腾汽车电脑进哪个车型系统
可以,完全可以。
但是硬盘最好是IDE接口为好,SATA在98上不好使
既然你工作需要使用98,那么相信你驱动方面的应该准备得很充分了。没问题,98主要就是驱动问题比较麻烦,而且现在很多设备的驱动都不支持98了,不过老一点的驱动是没问题的,看了下你的配置,基本上是可以的,像5200的驱动可以在98上使用的有好几个啊,上驱动之家看看便行了。
98不支持即插即用,所以U盘之类的一定要带好驱动。
谁能告诉我奔腾4的发展历史
D-Life系统。奔腾外观强悍时尚新颖,,整车姿态充满轻盈感,看起来睿智又动感。搭载一汽奔腾最新研发的车联网D-Life系统,相当于随车搭载的智能终端。它可以灵活定制各种在线应用,如导航、音乐、广播、新闻、天气、社交网络等。
奔腾4:全球最快微处理器
CPU发展历史
CPU是Central Processing Unit(中央微处理器)的缩写,它是计算机中最重要的一个部分,由运算器和控制器组成。如果把计算机比作人,那么CPU就是人的大脑。CPU的发展非常迅速,个人电脑从8088(XT)发展到现在的Pentium 4时代,只经过了不到二十年的时间。
从生产技术来说,最初的8088集成了29000个晶体管,而PentiumⅢ的集成度超过了2810万个晶体管;CPU的运行速度,以MIPS(百万个指令每秒)为单位,8088是0.75MIPS,到高能奔腾时已超过了1000MIPS。不管什么样的CPU,其内部结构归纳起来都可以分为控制单元、逻辑单元和存储单元三大部分,这三个部分相互协调,对命令和数据进行分析、判断、运算并控制计算机各部分协调工作。
CPU从最初发展至今已经有二十多年的历史了,这期间,按照其处理信息的字长,CPU可以分为:4位微处理器、8位微处理器、16位微处理器、32位微处理器以及正在酝酿构建的64位微处理器,可以说个人电脑的发展是随着CPU的发展而前进的。
Intel 4004
1971年,英特尔公司推出了世界上第一款微处理器4004,这是第一个可用于微型计算机的四位微处理器,它包含2300个晶体管。随后英特尔又推出了8008,由于运算性能很差,其市场反应十分不理想。1974年,8008发展成8080,成为第二代微处理器。8080作为代替电子逻辑电路的器件被用于各种应用电路和设备中,如果没有微处理器,这些应用就无法实现。
由于微处理器可用来完成很多以前需要用较大设备完成的计算任务,价格又便宜,于是各半导体公司开始竞相生产微处理器芯片。Zilog公司生产了8080的增强型Z80,摩托罗拉公司生产了6800,英特尔公司于1976年又生产了增强型8085,但这些芯片基本没有改变8080的基本特点,都属于第二代微处理器。它们均采用NMOS工艺,集成度约9000只晶体管,平均指令执行时间为1μS~2μS,采用汇编语言、BASIC、Fortran编程,使用单用户操作系统。
Intel 8086
1978年英特尔公司生产的8086是第一个16位的微处理器。很快Zilog公司和摩托罗拉公司也宣布计划生产Z8000和68000。这就是第三代微处理器的起点。
8086微处理器最高主频速度为8MHz,具有16位数据通道,内存寻址能力为1MB。同时英特尔还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算的指令。人们将这些指令集统一称之为 x86指令集。虽然以后英特尔又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的x86指令,而且英特尔在后续CPU的命名上沿用了原先的x86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。
1979年,英特尔公司又开发出了8088。8086和8088在芯片内部均采用16位数据传输,所以都称为16位微处理器,但8086每周期能传送或接收16位数据,而8088每周期只采用8位。因为最初的大部分设备和芯片是8位的,而8088的外部8位数据传送、接收能与这些设备相兼容。8088采用40针的DIP封装,工作频率为6.66MHz、7.16MHz或8MHz,微处理器集成了大约29000个晶体管。
8086和8088问世后不久,英特尔公司就开始对他们进行改进,他们将更多功能集成在芯片上,这样就诞生了80186和80188。这两款微处理器内部均以16位工作,在外部输入输出上80186采用16位,而80188和8088一样是采用8位工作。
1981年,美国IBM公司将8088芯片用于其研制的PC机中,从而开创了全新的微机时代。也正是从8088开始,个人电脑(PC)的概念开始在全世界范围内发展起来。从8088应用到IBM PC机上开始,个人电脑真正走进了人们的工作和生活之中,它也标志着一个新时代的开始。
Intel 80286
1982年,英特尔公司在8086的基础上,研制出了80286微处理器,该微处理器的最大主频为20MHz,内、外部数据传输均为16位,使用24位内存储器的寻址,内存寻址能力为16MB。80286可工作于两种方式,一种叫实模式,另一种叫保护方式。
在实模式下,微处理器可以访问的内存总量限制在1兆字节;而在保护方式之下,80286可直接访问16兆字节的内存。此外,80286工作在保护方式之下,可以保护操作系统,使之不像实模式或8086等不受保护的微处理器那样,在遇到异常应用时会使系统停机。
IBM公司将80286微处理器用在先进技术微机即AT机中,引起了极大的轰动。80286在以下四个方面比它的前辈有显著的改进:支持更大的内存;能够模拟内存空间;能同时运行多个任务;提高了处理速度。最早PC机的速度是4MHz,第一台基于80286的AT机运行速度为6MHz至8MHz,一些制造商还自行提高速度,使80286达到了20MHz,这意味着性能上有了重大的进步。
80286的封装是一种被称为PGA的正方形包装。PGA是源于PLCC的便宜封装,它有一块内部和外部固体插脚,在这个封装中,80286集成了大约130000个晶体管。
IBM PC/AT微机的总线保持了XT的三层总线结构,并增加了高低位字节总线驱动器转换逻辑和高位字节总线。与XT机一样,CPU也是焊接在主板上的。
那时的原装机仅指IBM PC机,而兼容机就是除了IBM PC以外的其它机器。在当时,生产CPU的公司除英特尔外,还有AMD及西门子公司等,而人们对自己电脑用的什么CPU也不关心,因为AMD等公司生产的CPU几乎同英特尔的一样,直到486时代人们才关心起自己的CPU来。
8086~80286这个时代是个人电脑起步的时代,当时在国内使用甚至见到过PC机的人很少,它在人们心中是一个神秘的东西。到九十年代初,国内才开始普及计算机。
Intel 80386
1985年春天的时候,英特尔公司已经成为了第一流的芯片公司,它决心全力开发新一代的32位核心的CPU—80386。Intel给80386设计了三个技术要点:使用“类286”结构,开发80387微处理器增强浮点运算能力,开发高速缓存解决内存速度瓶颈。
1985年10月17日,英特尔划时代的产品——80386DX正式发布了,其内部包含27.5万个晶体管,时钟频率为12.5MHz,后逐步提高到20MHz、25MHz、33MHz,最后还有少量的40MHz产品。
80386DX的内部和外部数据总线是32位,地址总线也是32位,可以寻址到4GB内存,并可以管理64TB的虚拟存储空间。它的运算模式除了具有实模式和保护模式以外,还增加了一种“虚拟86”的工作方式,可以通过同时模拟多个8086微处理器来提供多任务能力。
80386DX有比80286更多的指令,频率为12.5MHz的80386每秒钟可执行6百万条指令,比频率为16MHz的80286快2.2倍。80386最经典的产品为80386DX-33MHz,一般我们说的80386就是指它。
由于32位微处理器的强大运算能力,PC的应用扩展到很多的领域,如商业办公和计算、工程设计和计算、数据中心、个人娱乐。80386使32位CPU成为了PC工业的标准。
虽然当时80386没有完善和强大的浮点运算单元,但配上80387协处理器,80386就可以顺利完成许多需要大量浮点运算的任务,从而顺利进入了主流的商用电脑市场。另外,30386还有其他丰富的外围配件支持,如82258(DMA控制器)、8259A(中断控制器)、8272(磁盘控制器)、82385(Cache控制器)、82062(硬盘控制器)等。针对内存的速度瓶颈,英特尔为80386设计了高速缓存(Cache),采取预读内存的方法来缓解这个速度瓶颈,从此以后,Cache就和CPU成为了如影随形的东西。
Intel 80387/80287
严格地说,80387并不是一块真正意义上的CPU,而是配合80386DX的协处理芯片,也就是说,80387只能协助80386完成浮点运算方面的功能,功能很单一。
Intel 80386SX
1989年英特尔公司又推出准32位微处理器芯片80386SX。这是Intel为了扩大市场份额而推出的一种较便宜的普及型CPU,它的内部数据总线为32位,外部数据总线为16位,它可以接受为80286开发的16位输入/输出接口芯片,降低整机成本。
80386SX推出后,受到市场的广泛的欢迎,因为80386SX的性能大大优于80286,而价格只是80386的三分之一。
Intel 80386SL/80386DL
英特尔在1990年推出了专门用于笔记本电脑的80386SL和80386DL两种型号的386芯片。这两个类型的芯片可以说是80386DX/SX的节能型,其中,80386DL是基于80386DX内核,而80386SL是基于80386SX内核的。这两种类型的芯片,不但耗电少,而且具有电源管理功能,在CPU不工作的时候,自动切断电源供应。
Motorola 68000
摩托罗拉的68000是最早推出的32位微微处理器,当时是1984年,推出后,性能超群,并获得如日中天的苹果公司青睐,在自己的划时代个人电脑“PC-MAC”中采用该芯片。但80386推出后,日渐没落。
AMD Am386SX/DX
AMD的Am386SX/DX是兼容80386DX的第三方芯片,性能上和英特尔的80386DX相差无己,也成为当时的主流产品之一。
IBM 386SLC
这个是由IBM在研究80386的基础上设计的,和80386完全兼容,由英特尔生产制造。386SLC基本上是一个在80386SX的基础上配上内置Cache,同时包含80486SX的指令集,性能也不错。
Intel 80486
1989年,我们大家耳熟能详的80486芯片由英特尔推出。这款经过四年开发和3亿美元资金投入的芯片的伟大之处在于它首次实破了100万个晶体管的界限,集成了120万个晶体管,使用1微米的制造工艺。80486的时钟频率从25MHz逐步提高到33MHz、40MHz、50MHz。
80486是将80386和数学协微处理器80387以及一个8KB的高速缓存集成在一个芯片内。80486中集成的80487的数字运算速度是以前80387的两倍,内部缓存缩短了微处理器与慢速DRAM的等待时间。并且,在80x86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协微处理器的80386 DX性能提高了4倍。
随着芯片技术的不断发展,CPU的频率越来越快,而PC机外部设备受工艺限制,能够承受的工作频率有限,这就阻碍了CPU主频的进一步提高。在这种情况下,出现了CPU倍频技术,该技术使CPU内部工作频率为微处理器外频的2~3倍,486 DX2、486 DX4的名字便是由此而来。
Intel 80486 DX
常见的80486 CPU有80486 DX-33、40、50。486 CPU与386 DX一样内外都是32位的,但是最慢的486 CPU也比最快的386 CPU要快,这是因为486 SX/DX执行一条指令,只需要一个振荡周期,而386DX CPU却需要两个周期。
Intel 80486 SX
因为80486 DX CPU具有内置的浮点协微处理器,功能强大,当然价格也就比较昂贵。为了适应普通的用户的需要,尤其是不需要进行大量浮点运算的用户,英特尔公司推出了486 SX CPU。80486 SX主板上一般都有80487协微处理器插座,如果需要浮点协微处理器的功能,可以插上一个80487协微处理器芯片,这样就等同于486 DX了。常见的80486 SX CPU有:80486 SX-25、33。
Intel 80486 DX2/DX4
其实这种CPU的名字与频率是有关的,这种CPU的内部频率是主板频率的两/四倍,如80486 DX2-66,CPU的频率是66MHz,而主板的频率只要是33MHz就可以了。
Intel 80486 SL CPU
80486 SL CPU最初是为笔记本电脑和其他便携机设计的,与386SL一样,这种芯片使用3.3V而不是5V电源,而且也有内部切断电路,使微处理器和其他一些可选择的部件在不工作时,处于休眠状态,这样就可以减少笔记本电脑和其他便携机的能耗,延长使用时间。
Intel 486 OverDrive
升级486 SX可以在主板的协微处理器插槽上安装一个80487SX芯片,使其等效于486 DX,但是这样升级后,只是增加了浮点协微处理器的能力,并没有提高系统的速度。为了提高系统的速度,还有另外一种升级的方法,就是在协微处理器插槽上插上一个486 OverDrive CPU,它的原理与486 DX2 CPU一样,其内部操作速度可以是外部速度的两倍。如一个20MHz的主板上安插了OverDrive CPU之后,CPU内部的操作速度可以达到40MHz。486 OverDrive CPU也有浮点协微处理器的功能,常见的有:OverDrive-50、66、80。
TI 486 DX
作为全球知名的半导体厂商之一,美国德州仪器(TI)也在486时代异军突起,它自行生产了486 DX系列CPU,尤其在486DX2成为主流后,其DX2-80因较高的性价比成为当时主流产品之一,TI 486最高主频为DX4-100,但其后再也没有进入过CPU市场。
Cyrix 486DLC
这是Cyrix公司生产的486 CPU,说它是486 CPU,是指它的效率上逼近486 CPU,却并不是严格意义上的486 CPU,这是由486 CPU的特点而定的。486DLC CPU只是将386DX CPU与1K Cache组合在一块芯片里,没有内含浮点协微处理器,执行一条指令需要两个振荡周期。但是由于486DLC CPU设计精巧,486DLC-33 CPU的效率逼近英特尔公司的486 SX-25,而486DLC-40 CPU则超过了486 SX-25,并且486DLC-40 CPU的价格比486 SX-25便宜。486DLC CPU是为了升级386DM而设计的,如果原来有一台386电脑,想升级到486,但是又不想更换主板,就可以拔下原来的386 CPU,插上一块486DLC CPU就可以了。
Cyrix 5x86
自从英特尔另辟蹊径,开发了Pentium之后,Cyrix也很快推出了自己的新一代产品5x86。它仍然延用原来486系列的CPU插座,而将主频从100MHz提高到120MHz。5x86比起486来说性能是有所增加,可是比起Pentium来说,不但浮点性能远远不足,就连Cyrix一向自豪的整数运算性能也不那么高超,给人一种比上不足比下有余的感觉。由于5x86可以使用486的主板,因此一般将它看成是过渡产品。
AMD 5x86
AMD 486DX是AMD公司在 486市场的利器,它内置16KB回写缓存,并且开始了单周期多指令的时代,还具有分页虚拟内存管理技术。由于后期TI推出了486DX2-80,价格非常低,英特尔又推出了Pentium系列,AMD为了抢占市场的空缺,推出了5x86系列CPU。它是486级最高主频的产品,为5x86-120及133。它采用了一体的16K回写缓存,0.35微米工艺,33×4的133频率,性能直指Pentiun 75,并且功耗要小于Pentium。
Intel Pentium
1993年,全面超越486的新一代586 CPU问世,为了摆脱486时代微处理器名称混乱的困扰,英特尔公司把自己的新一代产品命名为Pentium(奔腾)以区别AMD和Cyrix的产品。AMD和Cyrix也分别推出了K5和6x86微处理器来对付芯片巨人,但是由于奔腾微处理器的性能最佳,英特尔逐渐占据了大部分市场。
Pentium最初级的CPU是Pentium 60和Pentium 66,分别工作在与系统总线频率相同的60MHz和66MHz两种频率下,没有我们现在所说的倍频设置。
早期的奔腾75MHz~120MHz使用0.5微米的制造工艺,后期120MHz频率以上的奔腾则改用0.35微米工艺。经典奔腾的性能相当平均,整数运算和浮点运算都不错。
Intel Pentium MMX
为了提高电脑在多媒体、3D图形方面的应用能力,许多新指令集应运而生,其中最著名的三种便是英特尔的MMX、SSE和AMD的3D NOW!。 MMX(MultiMedia Extensions,多媒体扩展指令集)是英特尔于1996年发明的一项多媒体指令增强技术,包括57条多媒体指令,这些指令可以一次处理多个数据,MMX技术在软件的配合下,就可以得到更好的性能。
多能奔腾(Pentium MMX)的正式名称就是“带有MMX技术的Pentium”,是在1996年底发布的。从多能奔腾开始,英特尔就对其生产的CPU开始锁倍频了,但是MMX的CPU超外频能力特别强,而且还可以通过提高核心电压来超倍频,所以那个时候超频是一个很时髦的行动。超频这个词语也是从那个时候开始流行的。
多能奔腾是继Pentium后英特尔又一个成功的产品,其生命力也相当顽强。多能奔腾在原Pentium的基础上进行了重大的改进,增加了片内16KB数据缓存和16KB指令缓存,4路写缓存以及分支预测单元和返回堆栈技术。特别是新增加的57条MMX多媒体指令,使得多能奔腾即使在运行非MMX优化的程序时,也比同主频的Pentium CPU要快得多。
这57条MMX指令专门用来处理音频、视频等数据。这些指令可以大大缩短CPU在处理多媒体数据时的等待时间,使CPU拥有更强大的数据处理能力。与经典奔腾不同,多能奔腾采用了双电压设计,其内核电压为2.8V,系统I/O电压仍为原来的3.3V。如果主板不支持双电压设计,那么就无法升级到多能奔腾。
多能奔腾的代号为P55C,是第一个有MMX技术(整量型单元执行)的CPU,拥有16KB数据L1 Cache,16KB指令L1 Cache,兼容SMM,64位总线,528MB/s的频宽,2时钟等待时间,450万个晶体管,功耗17瓦。支持的工作频率有:133MHz、150MHz、166MHz、200MHz、233MHz。
Intel Pentium Pro
曾几何时,Pentium Pro是高端CPU的代名词,Pentium Pro所表现的性能在当时让很多人大吃一惊,但是Pentium Pro是32位数据结构设计的CPU,所以Pentium Pro运行16位应用程序时性能一般,但仍然是32位的赢家,但是后来,MMX的出现使它黯然失色。
Pentium Pro(高能奔腾,686级的CPU)的核心架构代号为P6(也是未来PⅡ、PⅢ所使用的核心架构),这是第一代产品,二级Cache有256KB或512KB,最大有1MB的二级Cache。工作频率有:133/66MHz(工程样品),150/60MHz、166/66MHz、180/60MHz、200/66MHz。
AMD K5
K5是AMD公司第一个独立生产的x86级CPU,发布时间在1996年。由于K5在开发上遇到了问题,其上市时间比英特尔的Pentium晚了许多,再加上性能不好,这个不成功的产品一度使得AMD的市场份额大量丧失。K5的性能非常一般,整数运算能力不如Cyrix的6x86,但是仍比Pentium略强,浮点运算能力远远比不上Pentium,但稍强于Cyrix。综合来看,K5属于实力比较平均的那一种产品。K5低廉的价格显然比其性能更能吸引消费者,低价是这款CPU最大的卖点。
AMD K6
AMD 自然不甘心Pentium在CPU市场上呼风唤雨,因此它们在1997年又推出了K6。K6这款CPU的设计指标是相当高的,它拥有全新的MMX指令以及64KB L1 Cache(比奔腾MMX多了一倍),整体性能要优于奔腾MMX,接近同主频PⅡ的水平。K6与K5相比,可以平行地处理更多的指令,并运行在更高的时钟频率上。AMD在整数运算方面做得非常成功,K6稍微落后的地方是在运行需要使用到MMX或浮点运算的应用程序方面,比起同样频率的Pentium 要差许多。
K6拥有32KB数据L1 Cache,32KB指令L1 Cache,集成了880万个晶体管,采用0.35微米技术,五层CMOS,C4工艺反装晶片,内核面积168平方毫米(新产品为68平方毫米),使用Socket7架构。
Cyrix 6x86/MX
Cyrix 也算是一家老资格的CPU开发商了,早在x86时代,它和英特尔,AMD就形成了三雄并立的局面。
自从Cyrix与美国国家半导体公司合并后,使它终于拥有了自己的芯片生产线,成品也日益完善和完备。Cyrix的6x86是投放到市场上与Pentium兼容的微处理器。
IDT WinChip
美国IDT公司(Integrated Device Technology)作为新加入此领域的CPU生产厂商,在1997年推出的第一个微微处理器产品是WinChip(即C6),在整个CPU市场上所占的份额还不足1%。1998年5月,IDT宣布了它的第二代产品WinChip 2 。
WinChip 2在原有WinChip的基础上作了一些改进,增加了一个双指令的MMX单元,增强了浮点运算功能。改进后的WinChip 2比相同频率的WinChip性能提高约10%,基本达到Intel Pentium微处理器的性能。
Intel PentiumⅡ
1997年~1998年是CPU市场竞争异常激烈的一年,这一时期的CPU芯片异彩纷呈,令人目不暇接。
PentiumⅡ的中文名称叫“奔腾二代”,它有Klamath、Deschutes、Mendocino、Katmai等几种不同核心结构的系列产品,其中第一代采用Klamath核心,0.35微米工艺制造,内部集成750万个晶体管,核心工作电压为2.8V。
PentiumⅡ微处理器采用了双重独立总线结构,即其中一条总线连通二级缓存,另一条负责主要内存。PentiumⅡ使用了一种脱离芯片的外部高速L2 Cache,容量为512KB,并以CPU主频的一半速度运行。作为一种补偿,英特尔将PentiumⅡ的L1 Cache从16KB增至32KB。另外,为了打败竞争对手,英特尔第一次在PentiumⅡ中采用了具有专利权保护的Slot 1接口标准和SECC(单边接触盒)封装技术。
1998年4月16日,英特尔第一个支持100MHz额定外频的、代号为Deschutes的350、400MHz CPU正式推出。采用新核心的PentiumⅡ微处理器不但外频提升至100MHz,而且它们采用0.25微米工艺制造,其核心工作电压也由2.8V降至2.0V,L1 Cache和L2 Cache分别是32KB、512KB。支持芯片组主要是Intel的440BX。
在1998年至1999年间,英特尔公司推出了比PentiumⅡ功能更强大的CPU--Xeon(至强微处理器)。该款微处理器采用的核心和PentiumⅡ差不多,0.25微米制造工艺,支持100MHz外频。Xeon最大可配备2MB Cache,并运行在CPU核心频率下,它和PentiumⅡ采用的芯片不同,被称为CSRAM(Custom StaticRAM,定制静态存储器)。除此之外,它支持八个CPU系统;使用36位内存地址和PSE模式(PSE36模式),最大800MB/s的内存带宽。Xeon微处理器主要面向对性能要求更高的服务器和工作站系统,另外,Xeon的接口形式也有所变化,采用了比Slot 1稍大一些的Slot 2架构(可支持四个微处理器)。
Intel Celeron(赛扬)
英特尔为进一步抢占低端市场,于1998年4月推出了一款廉价的CPU—Celeron(中文名叫赛扬)。最初推出的Celeron有266MHz、300MHz两个版本,且都采用Covington核心,0.35微米工艺制造,内部集成1900万个晶体管和32KB一级缓存,工作电压为2.0V,外频66MHz。Celeron与PentiumⅡ相比,去掉了片上的L2 Cache,此举虽然大大降低了成本,但也正因为没有二级缓存,该微处理器在性能上大打折扣,其整数性能甚至不如Pentium MMX。
为弥补缺乏二级缓存的Celeron微处理器性能上的不足,进一步在低端市场上打击竞争对手,英特尔在Celeron266、300推出后不久,又发布了采用Mendocino核心的新Celeron微处理器—Celeron300A、333、366。与旧Celeron不同的是,新Celeron采用0.25微米工艺制造,同时它采用Slot 1架构及SEPP封装形式,内建32KB L1 Cache、128KB L2 Cache,且以CPU相同的核心频率工作,从而大大提高了L2 Cache的工作效率。
AMD K6-2
AMD于1998年4月正式推出了K6-2微处理器。它采用0.25微米工艺制造,芯片面积减小到了68平方毫米,晶体管数目也增加到930万个。另外,K6-2具有64KB L1 Cache,二级缓存集成在主板上,容量从512KB到2MB之间,速度与系统总线频率同步,工作电压为2.2V,支持Socket 7架构。
K6-2是一个K6芯片加上100MHz总线频率和支持3D Now!浮点指令的“结合物”。3D Now!技术是对x86体系的重大突破,它大大加强了处理3D图形和多媒体所需要的密集浮点运算性能。此外,K6-2支持超标量MMX技术,支持100MHz总线频率,这意味着系统与L2缓存和内存的传输率提高近50%,从而大大提高了整个系统的表现。
Cyrix MⅡ
作为Cyrix公司独自研发的最后一款微处理器,Cyrix MⅡ是于1998年3月开始生产的。除了具有6x86本身的特性外,该微处理器还支持MMX指令,其核心电压为2.9V,具有256字节指令;3.5X倍频;核心内集成650万个晶体管,功耗20.6瓦;64KB一级缓存。
Rise mp6
Rise公司是一家成立于1993年11月的美国公司,主要生产x86兼容的CPU,在1998年推出了mP6 CPU。mp6不仅价格便宜,而且性能优异,有着很好的多媒体性能和强大的浮点运算。mp6使用Socket 7/Super 7兼容插座,只有16KB的一级缓存。
Intel PentiumⅢ
1999年春节刚过,英特尔公司就发布了采用Katmai核心的新一代微处理器—PentiumⅢ。该微处理器除采用0.25微米工艺制造,内部集成950万个晶体管,Slot 1架构之外,它还具有以下新特点:系统总线频率为100MHz;采用第六代CPU核心—P6微架构,针对32位应用程序进行优化,双重独立总线;一级缓存为32KB(16KB指令缓存加16KB数据缓存),二级缓存大小为512KB,以CPU核心速度的一半运行;采用SECC2封装形式;新增加了能够增强音频、视频和3D图形效果的SSE(Streaming SIMD Extensions,数据流单指令多数据扩展)指令集,共70条新指令。PentiumⅢ的起始主频速度为450MHz。
和PentiumⅡ Xeon一样,英特尔同样也推出了面向服务器和工作站系统的高性能CPU—PentiumⅢ Xeon至强微处理器。除前期的PentiumⅡ Xeon500、550采用0.25微米技术外,该款微处理器是采用0.18微米工艺制造,Slot 2架构和SECC封装形式,内置32KB一级缓存和512KB二级缓存,工作电压为1.6V。
Intel CeleronⅡ
为进一步巩固低端市场优势,英特尔于2000年3月29日推出了采用Coppermine核心CeleronⅡ。该款微处理器同样采用0.18微米工艺制造,核心集成1900万个晶体管,采用FC-PGA封装形式,它和赛扬Mendocino一样内建128KB和CPU同步运行的L2 Cache,故其内核也称为Coppermine 128。CeleronⅡ不支持多微处理器系统。但是,CeleronⅡ的外频仍然只有66MHz,这在很大程度上限制了其性能的发挥。
AMD K6-Ⅲ
AMD于1999年2月推出了代号为“Sharptooth”(利齿)的K6-Ⅲ,它是该公司最后一款支持Super 7架构和CPGA封装形式的CPU,采用0.25微米制造工艺、内核面积是135平方毫米,集成了2130万个晶体管,工作电压为2.2V/2.4V。
相对于
奔腾4简介及详细资料
2000年11月21日,美国英特尔公司通过互联网向北京和世界其它国家同时发布最新一代微处理器——奔腾4。奔腾4是目前世界上速度最快的微处理器芯片,它的推出为全球IT产业发展注入了新动力,是全球计算机技术发展的一个重要里程碑。
超强功能奔腾4处理器面向高性能台式计算机,在处理音频和视频、充分利用互联网技术及显示3D图形方面具有超强功能。
NetBurst技术奔腾4处理器的基础是NetBurst技术,其技术特点包括超级通道技术和可使奔腾4处理器在20级通道里执行软件指令。因此,这一技术将在今后几年里为英特尔最先进的、面向个人消费者和企业用户的32位处理器提供升级空间。
面向互联网奔腾4处理器的设计瞄准的是互联网及其未来发展,根据基准测试结果,奔腾4处理器的图像处理速度比奔腾3快47%。
多家厂商展示在北京的发布现场,长城、戴尔、东海、方正、海尔、海信、IBM、浪潮、联想、TCL等厂商展示了采用奔腾4处理器的台式计算机。中国的数家计算机厂商与英特尔同步推出了自有品牌的基于奔腾4的电脑,它充分体现了中国信息产业与日俱增的技术实力。
简介
Pentium 4首款产品工程代号为:Willamette,拥有1.4GHz左右的核心时钟,并使用Socket 423脚位架构,于2000年11月发布。值得注意的是,Pentium 4有着非常快速到400MHz的前端汇流排,之后更有提升到533MHz、800MHz,它其实是一个100MHz时钟频率的四倍数据速率(QDR)前端汇流排,因此数据传输速率为4×100MHz。
相应的,Pentium 4前期的竞争对手AMD Athlon处理器采用双倍数据输率(DDR)前端汇流排,拥有266MHz或333MHz的数据传输速率(2×133MHz、2×166MHz)。
性能令业界观察人士感到意外的是,Pentium 4没有在"整数处理速度"和"浮点性能"这两个标准重要性能之一上比之前的P6架构设计有任何提升。相反,它通过牺牲每个周期的性能以实现非常高的时钟速度和SSE性能。与英特尔的传统保持一致的是,Pentium 4也有低端Celeron〔通常称为 Celeron 4 〕及Celeron版本和用于SMP配置的高端至强〔至强〕版本。
设计目标Pentium 4的设计目标是适应更快的时钟速度,因为消费者开始依据更高的时钟购买计算机。在这方面Pentium 4是一个经典的市场驱动技术的范例。这很快就推动了超微半导体(AMD)的时钟频率神话运动。英特尔使用一个深度的指令流水线来实现这个目标,同其它如Pentium III和Athlon那样的CPU相比Pentium 4降低了每个时钟周期能够处理的实际工作数目,但是它能够以更高的时钟速度工作。AMD则采用所谓的PR值来标示与Pentium 4相对应的Athlon XP处理器。
英特尔在发表Pentium 4时向大众宣布说,NetBurst架构能够运行在10GHz。然而,NetBurst架构在4GHz遇到了无法解决的高功耗问题。这迫使英特尔在2005年年中放弃了Pentium 4,并转向升温更少的Pentium M,祭出"MoDT (Mobile on DeskTop)"的旗帜;由此,Pentium M也被重新定位为桌面和小型伺服器市场。
核心 Willamette Willamette核心的Pentium 4处理器
第一款Pentium 4 Willamette设计过程经过了很长时间的延迟。它最初在1998年的一个产品发展路线中提出,像英特尔把Pentium III作为他们的主流产品一样看待。当时,人们仅仅希望Willamette在面世时能够突破1GHz的屏障。然而,当Pentium III发布以后,很明显英特尔不能将Willamette称为Pentium III。由于它的架构与Pentium III相比有很大的不同,Pentium 4采用NetBurst架构,它被命名为Pentium 4,这也终结了英特尔以罗马数字命名的规则。
许多业界专家认为,最初的1.4和1.5GHz P4的发布只是在产品真正完善之前的一个权宜之计。根据这些专家的观点,Willamette的发布是因为当时竞争产品AMD AthlonThunderbird性能已经超过了Pentium III,并且英特尔对于Pentium III的改进还不现实。这个新的核心使用0.18微米〔180纳米〕工艺生产,最初在主机板上使用Socket 423,后来的版本更改到Socket 478。
在性能测试中,Willamette的表现有点儿让分析人士失望,因为它不仅在所有的测试环境中不能超过Athlon和最高频率的Pentium III,而且很明显它并不优于低端的AMD Duron。尽管售价为819美元(1000颗的批发价),它的销售表现一般但是增长势头可观,这在一定程度上是由于需要相对较昂贵的Rambus动态随机存储器(RDRAM)所致。Pentium III仍然保持英特尔最卖座的晶片,Athlon的销售也稍稍领先于Pentium 4。
在2001年1月,一个频率更低的1.3GHz型晶片也加入到这个系列,但在随后的12个月中,英特尔慢慢追上了AMD的领先地位。2001年4月英特尔推出了1.7GHz的P4,它是第一个性能明显优于Pentium III的晶片。2001年7月英特尔推出了1.6和1.8GHz的型号,在8月它推出了1.9和2.0GHz的Pentium 4。在这个月中,它发布了一款新的能够支持廉价PC133 SDRAM的晶片组。尽管使用SDRAM将比RDRAM慢很多,PC133比较低廉的价格这样一个事实带来了Pentium 4销售的大幅增长,几乎是一夜之间就将Pentium III从市场销售首位的位置赶了下去。
2.0 GHz 是第一款真正能够挑战Athlon Thunderbird的P4,当时它是市场上无可争议的最快的x86处理器。许多观察人士认为雷鸟仍然是市场上总体性能最快的,但是它们之间的性能差距已经非常接近,所以任何一方的支持者宣称超出对方都不是不合理的。对于英特尔来说,这是一个了不起的成就。英特尔已经在x86CPU性能上保持了16年的领先位置,在AMD Athlon发布之前只出现过两次短暂的例外。
Northwood2001年10月Athlon XP又一次为AMD赢得了明显的领先,但是在2002年1月英特尔发布了使用Northwood核心的2.0和2.2GHz的Pentium 4。Northwood将二级快取的大小从256KB增加到了512KB(电晶体数量从4200万增加到5500万)并且使用了130纳米制造工艺。使用更小电晶体制造的晶片能够在同样的速度产生更少的热量,或者工作在更高的时钟频率。不幸的是,对于许多用户来说,这个新的晶片不能用来升级旧的系统,因为它需要一个新的插座(Socket 478),虽然后来又制造了能够让Socket 423使用Northwood处理器的转换器。
Northwood带来了Pentium 4时代。尽管争夺性能领先的战斗依然很激烈(因为AMD发布了更快版本的Athlon XP),但是许多观察人士都认同最快的Northwood P4稍稍领先于对手。尤其是在2002年夏天更是这样,当时AMD转换到130纳米制造技术过程被延迟,从2.4到2.8GHz范围的P4很显然是当时市场上最快的晶片。
2.4GHz的Pentium 4于2002年4月发布,汇流排速度从400MHz(100MHz四倍)提升到533MHz(133MHz四倍)用于5月发布的2.53GHz、8月发布的2.6和2.8GHz P4,3.06GHz的Pentium 4在11月发布。
3.06GHz的处理器支持超执行绪(首次出现在至强处理器中),它允许多个执行绪同时运行,它通过复制处理器的一部分让作业系统认为有两个逻辑处理器来实现。在所有的Northwood CPU中都有超执行绪机制,但是只在3.06GHz型号中允许使用。
2003年4月,英特尔发布了一系列频率范围从2.4到3.0GHz的新款800MHz FSB晶片。这些新版本的与以往晶片的主要不同就是全部都支持超执行绪机制,并且系统汇流排频率是800MHz。人们曾经猜想这些是为了与AMD处理器的Hammer系列竞争。然而,AMD只发布了Opteron一款,并且最初拒绝提供AGP控制器,这样就阻止了Opteron侵蚀Pentium 4的领地。AMD的确也将Athlon XP的汇流排速度从333MHz提升到了400MHz,但这并不能阻止新款的3.0GHz P4,并且FSB不是问题所在;从333MHz到400MHz的转换仅仅带来了很小的乃至没有性能提升。3.2GHz的Pentium 4在6月上市,最后一个3.4GHz的版本在2004年早期上市。
评价过分超频早期的Northwood晶片将会产生令人震惊的现象。当核心电压超过1.7V时,处理器将随时间延长逐渐变得不稳定,直至最后坏掉完全不能再用。人们认为这是由于电子迁移这种物理现象导致的,其中CPU的内部通路由于过度的电子能量随着时间逐步退化。这也被称为Northwood突然死亡症( S udden N orthwood D eath S yndrome)。Mobile Pentium 4 Mobile Intel Pentium 4 Processor Intel Mobile Pentium 4处理器与Mobile Pentium 4-M不同,外观上在大的差别就是Mobile Pentium 4上与桌面型Pentium 4处理器一样有晶圆上的铁盖,INTEL将它定位使用笔记本电脑取代台式机的用户,他与桌面型的Pentium 4一样使用Socket 478的插槽 ,它也提供Hyper-Threading超执行绪与EIST的功能,FSB也比Mobile P4-M的400高,达到FSB533。新型的Mobile P4采90纳米工艺,最高时钟高达3.4GHz以及1MB的L2高速快取。
Pentium也是基于Northwood核心, Mobile Intel Pentium 4 Processor - M 在2002年4月23日发布,它包括了英特尔的EIST技术来降低功耗,但是不包括超执行绪技术,L2最大512K,最高时钟为3.06GHz。同时期的廉价版Celeron也有推出类似Mobile Pentium 4-M的处理器,FSB与P4-M相同但L2降为P4-M的一半只有256K,后期的产品最高时钟可达2.8GHz。
极致版2003年9月,在英特尔开发者论坛上,Pentium 4极致版(Pentium 4 Extreme Edition,P4EE)面世了,这仅仅比AMD的Athlon 64和Athlon 64 FX(AMD64 FX)的发布早了一个星期。这个设计绝大部分与Pentium 4相同(以至于它们能工作在同一个主机板),但是它增加了一个2MB的3级快取。它与至强MP使用同一个Gallatin核心,尽管它使用Socket 478形式(不同于至强MP的603插座)和是至强 MP速度两倍的800MHz汇流排。它同时也提供LGA775版本。
尽管英特尔宣称极致版主要面向游戏人员,人们认为这是英特尔试图减弱Athlon 64发布的震撼一种努力,将它戏称为"紧急版本"。令人奇怪的是,尽管很多人批评英特尔从至强系列拼凑技术,但是很少有人批评AMD,AMD在它们的Athlon 64 FX上使用了同样的方法(它与Opteron的差别甚至少于极致版与至强 MP的区别)。
增加的快取的功效在不同环境会有所不同。在办公室套用中,极致版总体上比Northwood慢一点儿,这是由于L3快取增加了门槛值。一些游戏程式受益于增加的快取,尤其是那些基于Quake III和Unreal引擎的游戏。然而,提升最大的是在多媒体编码领域,在这里它不仅比奔腾4要快,而且比两款Athlon 64快。
在2004年晚些时候通过将汇流排速度从800MHz提升到1066MHz实现了小幅的性能提升。在Extreme Edition迁移到Prescott核心之前仅仅发布了一款3.46GHz基于Gallatin核心的晶片。新的3.73GHz Extreme Edition与6x0系列的Prescott 2M有同样的特性,不同的是它使用1066MHz汇流排。然而实际上3.73GHz Extreme Edition几乎总是比3.46GHz版本的速度要慢。
不要把Pentium 4极致版与后来发布的有类似名字的基于双核Pentium D的Pentium极致版相混淆。
Prescott2004年2月1日英特尔提出了一个代号为"Prescott"的新核心。这个核心首次使用90纳米的制造工艺,并且"它"是奔腾4微架构的一次重要更新--重要到足够让一些分析人士感到奇怪为什么英特尔没有选择将这个处理器称为Pentium 5。尽管Prescott工作在与Northwood相同的时钟速度,性能测试也显示在游戏应用程式中Northwood比Prescott还要稍微快一点儿,但是在视频编辑以及其它的多媒体套用中,Prescott额外的快取让它比Northwood有明显的速度优势。Prescott的架构允许它很容易地使用更高的时钟速度。(参见超频。)3.8GHz是批量生产的基于Prescott处理器的最快的处理器。
紧接着产品发布之后,人们就发现Prescott每个时钟周期比Northwood多产生大约60%的热量,几乎所有的评论都是负面的。插座类型的转换(从Socket 478到LGA775)原本希望能够将发热降低到可以接受的水平,但是实际上却是产生了相反的效果,同时功率消耗也增加的大约10%。但是,LGA775涉及的降温和安装系统是一种更好的设计,所以平均温度有轻微的降低。英特尔工程师随后对处理器进行的修改工作有望降低平均温度,但是这除了降低速度等级之外从来也没有先例。
最后,温度问题变得非常严重英特尔不得不全部放弃Prescott架构,并且开发4GHz部分的努力也被认为是浪费内部资源而被放弃了。另外的担忧是审查发现在极端状况下需要5.2GHz的Prescott核心才能与2.6GHz的Athlon FX-55的性能相比。回首当初英特尔发布Pentium 4时吹嘘的Pentium 4是为10GHz的处理速度设计的,这将被看作英特尔历史上最重要的或许也是最广为人知的工程失败(engineering shortfalls)事件。
据报导Pentium M英特尔设计成员内部的参考设计,Pentium 4的开发实质上已经被放弃。
Prescott以这样一个灾难性的结局终结是英特尔内部的策略使然。市场部不断地要求更高的时钟速度以使他们的产品与AMD有所区别。处理器的设计被市场需求而不是被架构本身所控制。职业发展也基于更高时钟速度这样一个理念,当P4项目终止最终到来的时候,它对于有着资助良好的桌面分部的许多管理人员有着严重的影响。
最初有两种Prescott产品线上市:带有800MHz FSB和支持超执行绪的E系列以及533MHz FSB和不支持超执行绪的A系列。
LGA775 Prescott使用一个评价系统将它们标记为5xx系列(Celeron D是3xx系列,Pentium M是7xx系列)。E系列的LGA775版本使用型号5x0(520-560),A系列的LGA775版本使用型号5x5和5x9(505-519)。最快的570J和571工作在3.8GHz。
5x0J系列(以及相应的低端版本5x5J系列和5x9J系列)为英特尔处理器产品线引进了XD bit(eXecute Disable)或执行禁止位。这项最初由AMD最初使用并称为NX bit的技术能够帮助阻止一定类型的有害代码非法利用快取器溢出来执行。
英特尔也发布了一系列支持EM64T的Prescott产品,它们是AMD64对于x86体系的64位扩充的 英特尔实现方法。这些产品最初作为F系列并且仅对OEM销售,但是后来重命名为5x1系列并且面向大众销售。两款低端的基于5x5/5x9系列的支持EM64T的Prescott也使用506和516的型号已经发布。
5x0、5x0J和5x1 Prescott为了加速一些诸如视频编辑这样使用多执行绪软体的处理器都集成有超执行绪技术。
Prescott 2M英特尔在2005年第一季度发布了代号为"Prescott 2M"的编号6x0的新版Prescott核心。它包含了崭新的64位技术(AMD64的实现,英特尔称为EM64T)、XD、EIST(英特尔增强SpeedStep技术)以及2MB的L2快取。然而,增加快取带来的优势大部分被更高的快取门槛、EM64T模式下的双字大小所抵消。双倍的快取与其说是为了加快速度,不如说是为了提供同样的空间以保证64位模式下的性能。
6xx系列的Prescott 2M处理器为了加速用于如视频编辑等多执行绪软体的处理器,它们都包含有超执行绪技术。
2005年11月14日,英特尔发布了带有VT(虚拟技术,代号为"Vanderpool")的Prescott 2M处理器。英特尔只发布了两款这种分别运行于3.6GHz 和 3.8GHz的Prescott 2M处理器:662和672。
Cedar Mill英特尔将在2006年第一季度发布代号为'Cedar Mill'的最后一个奔腾4版本。有86W TDP的Cedar Mill有望解决Prescott的过热问题。Cedar Mill有一个65nm工艺的核心,带有31级的流水线(同Prescott一样)、800MHz的FSB、EM64T、超执行绪和虚拟技术。Cedar Mill将带有一个2MB的L2快取。Cedar Mill将作为从频率2.8GHz到3.8GHz的奔腾6x1和6x3发布,如果市场足够大的话,英特尔将会发布4.0GHz或者更高时钟频率的晶片。
双核英特尔已经发布了市场推广标识为Pentium D8xx的三款主流双核Pentium 4版本。人们称赞这些晶片每个时钟速度有60-80%的性能提升。一个极致版〔Extreme Edition〕也已上市,它有允许四个执行绪并行处理的超执行绪技术。其它的特点包括SpeedStep技术(在3.0GHz及以上版本)、xD bit和EM64T。这些晶片在2005年5月推向了市场。
Pentium D初推出时的商标绰号为Smithfield核心的第一款Pentium D处理器使两个相连的Prescott核心。电源消耗大约155瓦。英特尔开发人员通过让每个核心工作在极低的时钟频率实现了降低了从Prescott的电力消耗(115瓦)的大幅度增加。极致版工作在3.2GHz,主流型号的频率分别为3.2、3.0和2.8GHz。除805使用533MHz FSB外,其他基于Smithfield的处理器都使用800MHz的FSB。
2006年第一季度推出的是Presler,它是一个Smithfield核心的65纳米版本。基于Presler的Pentium D有800MHz的FSB、发布型号将是920、930、940、950,分别工作在2.8、3.0、3.2和3.4GHz。基于Presler的奔腾极致版使用型号955,工作在3.46GHz,带有1066MHz的FSB和超执行绪技术。
技术特点不同版本英特尔Pentium 4处理的列表以及它们不同的特点。
公开名称
核心
CPU频率
Socket
FSB/理论
宽度
高速快取
其它特点
最初发布版本
Willamette
1.3 GHz -
2.0 GHz
423, 478
400 MHz /
3.2 GB/s
8 KB L1 数据 + 12 KB L1
指令 / 256 KB L2
20 级流水线,MMX / SSE / SSE2 指令
P4A
Northwood
1.6 GHz - 2.8 GHz
478
400 MHz / 3.2 GB/s
8 KB L1 数据 + 12 KB L1 指令 / 512 KB L2
改进的分支预测和其它的伪代码调整
P4B
Northwood
2.0 GHz - 3.06 GHz
478
533 MHz / 4.2 GB/s
8 KB L1 数据 + 12 KB L1 指令 / 512 KB L2
更高前置汇流排
P4C
Northwood
2.4 GHz - 3.4 GHz
478
800 MHz / 6.4 GB/s
8 KB L1 数据 + 12 KB L1 指令 / 512 KB L2
更高前置汇流排,超执行绪,21级的流水线,MMX / SSE / SSE2指令
P4E/5x0 系列
Prescott
2.8 GHz - 3.6 GHz
478,LGA775
800 MHz / 6.4 GB/s
16 KB L1 数据 + 12 KB L1 指令 / 1024 KB L2
超执行绪,31级的流水线,MMX / SSE / SSE2 / SSE3 指令
P4A* /5x5/5x9 系列
Prescott
2.4 GHz - 3.06 GHz
478, LGA775
533 MHz / 4.2 GB/s
16 KB L1 数据 + 12 KB L1 指令 / 1024 KB L2
不支持超执行绪,31级的流水线,MMX / SSE / SSE2 / SSE3 指令
P4 Extreme Edition
Gallatin
3.2 GHz - 3.4 GHz
478, LGA775
800 MHz / 6.4 GB/s
8 KB L1 数据 + 12 KB L1 指令 / 512 KB L2 / 2 MB L3
超执行绪,增加L3记忆体,21级的流水线,MMX / SSE / SSE2指令
5x0J 系列
Prescott
2.8 GHz - 3.8 GHz
LGA775
800 MT/s / 6.4 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 1 MB L2
超执行绪、执行禁止位(eXecute Disable bit)
5x5J/5x9J 系列
Prescott
2.67 GHz - 3.06 GHz
LGA775
533 MT/s / 4.2 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 1 MB L2
无超执行绪、执行禁止位
P4F/5x1 系列
Prescott
2.8 GHz - 3.8 GHz
LGA775
800 MT/s / 6.4 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 1 MB L2
支持EM64T、31 级指令流水线、MMX / SSE / SSE2 / SSE3 指令
6x0 系列
Prescott 2M**
3.0 GHz - 3.8 GHz
LGA775
800 MT/s / 6.4 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 2 MB L2
超执行绪、2 MiB L2 快取、支持EM64T
6x1 系列
Prescott 2M**
3.6 GHz - 3.8 GHz
LGA775
800 MT/s / 6.4 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 2 MB L2
超执行绪、2 MiB L2 快取、支持EM64T
6x2 系列
Cedar Mill
3.0 GHz - 3.8 GHz
LGA775
800 MT/s / 6.4 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 2 MB L2
超执行绪、2 MiB L2 快取、支持EM64T
P4 Extreme Edition
Gallatin
3.46 GHz
LGA775
1066 MT/s / 8.5 GB/s
8 KB L1 数据 + 12 KiB L1 指令 / 512 KiB L2 / 2 MB L3
addition of on-die L3 快取
P4 Extreme Edition
Prescott 2M**
3.73 GHz
LGA775
1066 MT/s / 8.5 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 2 MB L2 快取
超执行绪、更快前端汇流排
5x6 系列
Prescott
2.67 GHz - 2.93 GHz
LGA775
533 MT/s / 4.2 GB/s
16 KB L1 数据 + 12 KiB L1 指令 / 1 MB L2
无超执行绪、支持EM64T
注意事项奔腾 4 处理器使用能够在方波四个状态(上升、峰值、下降和谷值)传送数据的前端汇流排,而不是像以前的处理器那样使用一个状态,这样控制时钟的方波频率是FSB频率的四分之一。400、533、800和1066 MT每秒的汇流排使用的是100、 133、200和266MHz的方波。
其他* - 在作Prescott处理器系列规划的时候英特尔重复了"P4A"的命名,他们认为零售商会用这个名称让用户认识这个处理器;他们对于这种做法没有给出任何理由
** - 600系列的正式名称,尽管有时称作等同于至强,使用了Irwindale以将它与最初的Prescott区分开来。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。