电脑怎么自学编程_如何自己编程电脑系统
1.什么是电脑编程啊?
2.怎么学电脑编程?
3.如何在电脑上编程软件
4.电脑系统是怎么做出来的?
计算机编程最重要的是入门,如果入门的时候有一个好的学习方法及思路,有比较扎实的编程基础,对今后的学习都是十分有帮助的,最重要的是学习计算机编程前,需要了解计算机语言有哪些,选择一门语言进行系统的学习。目前,计算机语言分为JAVA、python、html5、C++等,建议你可以选择JAVA这门语言,比较热门,也是需求量、前景较光明的语言。
把一种计算机语言掌握后,想要学习别的语言也是比较简单的,因为计算机语言都是互通的。还有很多人说自己的基础很差,高中毕业什么的。其实这个并不重要,比如说英语,在计算机语言里所用到的单词量很少,而且都是常用词,经常使用就记住了。
当然,如果要看原文资料或者帮助的话,专业词汇比较多,不过在老师、同学的帮助下,也是没什么太大问题的。至于数学的学习,只是培养一个逻辑思维能力,在初学编程的时候影响不是很大。
学习计算机语言一般分为两种方法,一种是自学,一种是报班学习,对于零基础的学员建议报班学习,学习周期根据个人的实际情况而决定,一般在6个月到1年之间,如果基础不扎实,只能多加练习。
关于计算机编程的学习可以到达内了解一下,达内目前已在北京、上海、广州、深圳、大连、南京、武汉、杭州、西安、苏州、成都、沈阳等70个大中城市成立了342家学习中心,拥有员工超过10000多人,累计培训量已学员已达100万人次。
达内集团凭借雄厚的技术研发实力、过硬的教学质量、成熟的就业服务团队,为学员提供强大的职业竞争力,在用人企业中树立了良好的口碑。。
什么是电脑编程啊?
在开始回答你的问题之前,先看看程序的发展历史,请留意有关储存器和数据的描述:
1834 年:Babbage 设想制造一台通用分析机,在只读存储器(穿孔卡片)中存储程序和数据 。Babbage在以后的时间里继续他的研究工作,并于1840 年将操作位数提高到了40 位,并基本实现了控制中心(CPU)和存储程序的设想,而且程序可以根据条件进行跳转,能在几秒内做出一般的加法,几分钟内做出乘、除法。
1890 年:美国人口普查部门希望能得到一台机器帮助提高普查效率。Herman Hollerith (后来他的公司发展成了IBM 公司)借鉴Babbage 的发明,用穿孔卡片存储数据,并设计了机器。结果仅用6 周就得出了准确的人口统计数据(如果用人工方法,大概要花10 年时间)。
1935 年:IBM 推出IBM 601 机。这是一台能在一秒钟内算出乘法的穿孔卡片计算机 。这台机器无论在自然科学还是在商业应用上都具有重要的地位,大约制造了1500 台。
1941 年夏季:Atanasoff 和学生Berry 完成了能解线性代数方程的计算机,取名叫"ABC "(Atanasoff-Berry Computer),用电容作存储器 ,用穿孔卡片作辅助存储器,那些孔实际上是"烧"上去的,时钟频率是60Hz,完成一次加法运算用时一秒。
1943 年1 月:Mark I 自动顺序控制计算机在美国研制成功。整个机器有51 英尺长 、5 吨重 、75万个零部件。该机使用了3304 个继电器,60 个开关作为机械只读存储器。程序存储在纸带上 ,数据可以来自纸带或卡片阅读器。Mark I 被用来为美国海军计算弹道火力表。
1943 年9 月:Williams 和Stibitz 完成了"Relay Interpolator ",后来命名为"Model Ⅱ Re-
lay Calculator "的计算机。这是一台可编程计算机,同样使用纸带输入程序和数据。它运行更可靠,每个数用7 个继电器表示,可进行浮点运算。
真空管时代的计算机尽管已经步入了现代计算机的范畴,但因其体积大、能耗高、故障多、价格贵,从而制约了它的普及和应用。直到晶体管被发明出来,电子计算机才找到了腾飞的起点。
1947 年:Bell 实验室的William B.Shockley 、 John Bardeen 和Walter H.Brattain 发明了晶体
管,开辟了电子时代新纪元。
1949 年:剑桥大学的Wilkes 和他的小组制成了一台可以存储程序的计算机,输入输出设备仍是纸带。
1949 年:EDVAC(Electronic Discrete Variable Automatic Computer--电子离散变量自动计算机)--第一台使用磁带的计算机。这是一个突破,可以多次在磁带上存储程序。这台机器是John von Neumann 提议建造的。
1950 年:日本东京帝国大学的Yoshiro Nakamats 发明了软磁盘 ,其销售权由IBM公司获得 。由此开创了存储时代的新纪元。
1951 年:Grace Murray Hopper 完成了高级语言编译器。
1951 年:UNIVAC-1 --第一台商用计算机系统诞生,设计者是J.Presper Eckert 和John Mauchly 。
被美国人口普查部门用于人口普查,标志着计算机进入了商业应用时代。
1953 年:磁芯存储器被开发出来。
1954 年:IBM 的John Backus 和他的研究小组开始开发FORTRAN(FORmula TRANslation) ,1957 年完成。这是一种适合科学研究使用的计算机高级语言。
1957 年:IBM 开发成功第一台点阵式打印机。
好了现在开始吧:
操作系统是什么呢?说白了就是一套计算机的指令集合,而计算机的指令就是'1010101'之类的机器码,说到底,‘1001010’也是数据,就是可以储存在介质之中的东东,比如纸质卡片,磁盘,芯片上。对于问题“第一个操作系统如何编写的呢”,可以归结为:第一个计算机软件如何编写(在这里,请改变对操作系统的神秘感,操作系统也是一个软件,一个特殊的程序),即是计算机的指令如何记录下来,并且被计算机执行。那么答案已经出来了~~,请再次看一下上面的例子,你会有所启发
这就是穿孔卡片,上面的是什么呢?你可以说它是一张很多孔的板,你也可以说它是计算机指令(如果被计算机执行),你还可以说它是程序(也要被计算机执行),你甚至可以说他操作系统(这段程序可以管理计算机上各个硬件)
这个可能很别扭:
如果说操作系统在下面的东西上,你可能会更易接受。但是,请注意,他们只是储存介质而已,关键上面是什么数据:
还有什么问题请问吧~~~
还有一个问题回答:“自带boot”虽然不知道你这是什么意思(boot程序),但是可以肯定告诉你,在硬件生产时,“可以”直接把’boot”生产在芯片上,为什么?如上说,程序就是10100数据,生产商只要在芯片上设置电路的通断,就可以表示10101001000101 (注意了,这里只是一个例子)
好吧,现在假设我们有电脑,要开发操作系统,但是知道计算机指令
那么下面的一段程序(示例)我不得不把他写在纸质笔记本上:
mov ax,0
..
...
这段程序人工翻译成机器码,到现在还没有操作系统:
101001001001010010010100101001001010001........
好了操作系统在我的纸上写好了,我就请求硬件开发商把我的程序刻录到软盘上,于是开发商就对照1001001010101011001001010010010.....把数据刻录到软盘上
于是,操作系统开发完毕,只要想办法被CPU执行就可以了
怎么学电脑编程?
电脑编程就是编辑程序让电脑执行的过程。其中关于电脑编程的定义如下:
1、控件提供程序可见界面的可重用对象。控件的示例有文本框、标签和命令按钮。
2、事件由用户或操作系统引发的动作。事件的示例有击键、单击鼠标、一段时间的限制,或从端口接收数据。
3、方法嵌入在对象定义中的程序代码,它定义对象怎样处理信息并响应某事件。例如,数据库对象有打开纪录集并从一个记录移动到另一个记录的方法。
4、对象程序的基本元素,它含有定义其特征的属性,定义其任务和识别它可以响应的事件的方法。控件和窗体是Visual Basic中所有对象的示例。
5、过程为完成任务而编写的代码段。过程通常用于响应特定的事件。
6、属性对象的特征,如尺寸、位置、颜色或文本。属性决定对象的外观,有时也决定对象的行为。属性也用于为对象提供数据和从对象取回信息。
据了解,大学中常常以C语言作为编程的入门语言,所以初级教程的书可以是《C语言程序设计》,当然上百度搜索电脑编程网站也可以得到初级教程。
扩展资料
电脑编程的发展之路
电脑编程的方法经历了三个阶段,分别是传统的程序设计方法、可视化编程方法、面向对象的编程方法。?
1、传统的程序设计方法?
传统的编程方法是基于DOS操作系统下计算机程序的一种编程方法。这种设计方法更倾向于具体该怎么实现的一个过程,依赖于操作平台、编译系统等,移植性较差,用户在使用时也十分的不方便。?
2、可视化编程方法?
以所见即所得为指导思想,旨在实现编程工作的可视化。随时可以看见结果,程序与结果可以进行同步的调整。这种方法的优点在于利用了面向对象的思想,同时还加入了类的概念和事件驱动。可视化编程包括建立工程、创建图形用户界面、设置对象属性、编写程序代码、调试运行程序、保存和编译运行程序。?
3、面向对象的编程方法?
这种编程方法是目前主流的编程方法。这里面所说的对象可以指任何事物。比如所造的程序是应用于汽车厂家的,那么汽车厂的汽车都可以是对象。面向对象的三大原则就是封装、继承、多态。
参考资料:
如何在电脑上编程软件
如何学电脑编程? 笔者发现问得最多的问题莫过于"如何学习编程?JAVA该如何学习?"。类似的问题回答多了,就萌生了写下本文的想法。到时候再有人问起类似的问题,我可以告诉他(她),请你去看看《JAVA学习之路》。拜读过台湾蔡学镛先生的《JAVA夜未眠》,有些文章如《JAVA学习之道》等让我们确实有共鸣,本文题目也由此而来。
软件开发之路是充满荆棘与挑战之路,也是充满希望之路。JAVA学习也是如此,没有捷径可走。梦想像《天龙八部》中虚竹一样被无崖子醍醐灌顶而轻松获得一甲子功力,是很不现实的。每天仰天大叫"天神啊,请赐给我一本葵花宝典吧",殊不知即使你获得了葵花宝典,除了受自宫其身之苦外,你也不一定成得了"东方不败",倒是成"西方失败"的几率高一点。
"不走弯路,就是捷径",佛经说的不无道理。
我们今天来谈谈如何学习程序设计?
JAVA是一种平台,也是一种程序设计语言,如何学好程序设计不仅仅适用于JAVA,对C++等其他程序设计语言也一样管用。有编程高手认为,JAVA也好C也好没什么分别,拿来就用。为什么他们能达到如此境界?我想是因为编程语言之间有共通之处,领会了编程的精髓,自然能够做到一通百通。如何学习程序设计理所当然也有许多共通的地方。
1 培养兴趣
兴趣是能够让你坚持下去的动力。如果只是把写程序作为谋生的手段的话,你会活的很累,也太对不起自己了。多关心一些行业趣事,多想想盖茨。不是提倡天天做白日梦,但人要是没有了梦想,你觉得有味道吗?可能像许多深圳本地农民一样,打打麻将,喝喝功夫茶,拜拜财神爷;每个月就有几万十几万甚至更多的进帐,凭空多出个"食利阶层"。你认为,这样有味道吗?有空多到一些程序员论坛转转,你会发现,他们其实很乐观幽默,时不时会冒出智慧的火花。
2 慎选程序设计语言
男怕入错行,女怕嫁错郎。初学者选择程序设计语言需要谨慎对待。软件开发不仅仅是掌握一门编程语言了事,它还需要其他很多方面的背景知识。软件开发也不仅仅局限于某几个领域,而是已经渗透到了各行各业几乎每一个角落。
如果你对硬件比较感兴趣,你可以学习C语言/汇编语言,进入硬件开发领域。如果你对电信的行业知识及网络比较熟悉,你可以在C/C++等之上多花时间,以期进入电信软件开发领域。如果你对操作系统比较熟悉,你可以学习C/Linux等等,为Linux内核开发/驱动程序开发/嵌入式开发打基础。如果你想介入到应用范围最广泛的应用软件开发(包括电子商务电子政务系统)的话,你可以选择J2EE或.NET,甚至LAMP组合。每个领域要求的背景知识不一样。做应用软件需要对数据库等很熟悉。总之,你需要根据自己的特点来选择合适你的编程语言。
3 要脚踏实地,快餐式的学习不可取
先分享一个故事。
有一个小朋友,他很喜欢研究生物学,很想知道那些蝴蝶如何从蛹壳里出来,变成蝴蝶便会飞。 有一次,他走到草原上面看见一个蛹,便取了回家,然后看着,过了几天以后,这个蛹出了一条裂痕,看见里面的蝴蝶开始挣扎,想抓破蛹壳飞出来。 这个过程达数小时之久,蝴蝶在蛹里面很辛苦地拼命挣扎,怎么也没法子走出来。这个小孩看着看着不忍心,就想不如让我帮帮它吧,便随手拿起剪刀在蛹上剪开,使蝴蝶破蛹而出。 但蝴蝶出来以后,因为翅膀不够力,变得很臃肿,飞不起来。
这个故事给我们的启示是:欲速则不达。
浮躁是现代人最普遍的心态,能怪谁?也许是贫穷落后了这么多年的缘故,就像当年的一样,都想大步跨入共产主义社会。现在的软件公司、客户、政府、学校、培训机构等等到处弥漫着浮躁之气。就拿笔者比较熟悉的深圳IT培训行业来说吧,居然有的打广告宣称"参加培训,100%就业",居然报名的学生不少,简直是藐视天下程序员。社会环境如是,我们不能改变,只能改变自己,闹市中的安宁,弥足珍贵。许多初学者C++/JAVA没开始学,立马使用VC/JBuilder,会使用VC/JBuilder开发一个Hello World程序,就忙不迭的向世界宣告,"我会软件开发了",简历上也大言不惭地写上"精通VC/JAVA"。结果到软件公司面试时要么被三两下打发走了,要么被驳的体无完肤,无地自容。到处碰壁之后才知道捧起《C++编程思想》《JAVA编程思想》仔细钻研,早知如此何必当初呀。
"你现在讲究简单方便,你以后的路就长了",好象也是佛经中的劝戒。
4 多实践,快实践
彭端淑的《为学一首示子侄》中有穷和尚与富和尚的故事。
从前,四川边境有两个和尚,一个贫穷,一个有钱。一天,穷和尚对富和尚说:"我打算去南海朝圣,你看怎么样?"富和尚说:"这里离南海有几千里远,你靠什么去呢?"穷和尚说:"我只要一个水钵,一个饭碗就够了。"富和尚为难地说:"几年前我就打算买条船去南海,可至今没去成,你还是别去吧!" 一年以后,富和尚还在为租赁船只筹钱,穷和尚却已经从南海朝圣回来了。
这个故事可解读为:任何事情,一旦考虑好了,就要马上上路,不要等到准备周全之后,再去干事情。假如事情准备考虑周全了再上路的话,别人恐怕捷足先登了。软件开发是一门工程学科,注重的就是实践,"君子动口不动手"对软件开发人员来讲根本就是错误的,他们提倡"动手至上",但别害怕,他们大多温文尔雅,没有暴力倾向,虽然有时候蓬头垢面的一副"比尔盖茨"样。有前辈高人认为,学习编程的秘诀是:编程、编程、再编程,笔者深表赞同。不仅要多实践,而且要快实践。我们在看书的时候,不要等到你完全理解了才动手敲代码,而是应该在看书的同时敲代码,程序运行的各种情况可以让你更快更牢固的掌握知识点。
5 多参考程序代码
程序代码是软件开发最重要的成果之一,其中渗透了程序员的思想与灵魂。许多人被《仙剑奇侠传》中凄美的爱情故事感动,悲剧的结局更有一种缺憾美。为什么要以悲剧结尾?据说是因为写《仙剑奇侠传》的程序员失恋而安排了这样的结局,他把自己的感觉融入到游戏中,却让众多的仙剑迷扼腕叹息。
多多参考代码例子,对JAVA而言有参考文献[4.3],有API类的源代码(JDK安装目录下的src.zip文件),也可以研究一些开源的软件或框架。
6 加强英文阅读能力
对学习编程来说,不要求英语, 但不能一点不会,。最起码像JAVA API文档(参考文献[4.4])这些东西还是要能看懂的,连猜带懵都可以;旁边再开启一个"金山词霸"。看多了就会越来越熟练。在学JAVA的同时学习英文,一箭双雕多好。另外好多软件需要到英文网站下载,你要能够找到它们,这些是最基本的要求。英语好对你学习有很大的帮助。口语好的话更有机会进入管理层,进而可以成为剥削程序员的"周扒皮"。
7 万不得已才请教别人
笔者在网校的在线辅导系统中解决学生问题时发现,大部分的问题学生稍做思考就可以解决。请教别人之前,你应该先回答如下几个问题。
你是否在google中搜索了问题的解决办法?
你是否查看了JAVA API文档?
你是否查找过相关书籍?
你是否写代码测试过?
如果回答都是"是"的话,而且还没有找到解决办法,再问别人不迟。要知道独立思考的能力对你很重要。要知道程序员的时间是很宝贵的。
8 多读好书
书中自有颜如玉。比尔·盖茨是一个饱读群书的人。虽然没有读完大学,但九岁的时候比尔·盖茨就已经读完了所有的百科全书,所以他精通天文、历史、地理等等各类学科,可以说比尔·盖茨不仅是当今世界上金钱的首富,而且也可以称得上是知识的巨富。
笔者在给学生上课的时候经常会给他们推荐书籍,到后来学生实在忍无可忍开始抱怨,"天呐,这么多书到什么时候才能看完了","学软件开发,感觉上了贼船"。这时候,我的回答一般是,"别着急,什么时候带你们去看看我的书房,到现在每月花在技术书籍上的钱400元,这在软件开发人员之中还只能够算是中等的",学生当场晕倒。(注:这一部分学生是刚学软件开发的)
9 使用合适的工具
工欲善其事必先利其器。软件开发包含各种各样的活动,需求收集分析、建立用例模型、建立分析设计模型、编程实现、调试程序、自动化测试、持续集成等等,没有工具帮忙可以说是寸步难行。工具可以提高开发效率,使软件的质量更高BUG更少。组合称手的武器。到飞花摘叶皆可伤人的境界就很高了,无招胜有招,手中无剑心中有剑这样的境界几乎不可企及
电脑系统是怎么做出来的?
学习编程前,你需要考虑几个方面
1、我学编程的目的是什么
2、我想实现的功能是什么
3、我认为我可以学习多久
随后根据需求选择学习的语言,像幼儿的积木编程,青少年的python海龟画图,乃至较高级的java、PHP、前端……
在学习编程之前还要查询资料,所学的语言是否需要对应的环境
例如:python的2、3环境,Java的版本……
特殊的语言比如swift,这是Apple的专属编程语言,自研的
现在我们回归正题
你的需求是在电脑上编程软件
如果你是初学者,我建议学习python语言
python语言这几年逐渐被大众接受,属于主流编程语言
难度系数也不高,认真学习半年就可以正常编写电脑软件
当然python也可以借助kivy库来开发app
这需要你自己来探索研究
希望我的回复能对你有所帮助
你用到的操作系统,是微软公司大量程序员,写出来的。
操作系统(Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。
操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口。操作系统的功能包括管理计算机系统的硬件、软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限度地发挥作用,提供各种形式的用户界面,使用户有一个好的工作环境,为其它软件的开发提供必要的服务和相应的接口等。实际上,用户是不用接触操作系统的,操作系统管理着计算机硬件资源,同时按照应用程序的资源请求,分配资源,如:划分CPU时间,内存空间的开辟,调用打印机等。
现代操作系统通常都有一个使用的绘图设备的图形用户界面(GUI),并附加如鼠标或触控面版等有别于键盘的输入设备。旧的OS或性能导向的服务器通常不会有如此亲切的界面,而是以命令行界面(CLI)加上键盘为输入设备。以上两种界面其实都是所谓的壳,其功能为接受并处理用户的指令(例如按下一按钮,或在命令提示列上键入指令)。
选择要安装的操作系统通常与其硬件架构有很大关系,只有Linux与BSD几乎可在所有硬件架构上运行,而Windows NT仅移植到了DEC Alpha与MIPS Magnum。在1990年代早期,个人计算机的选择就已被局限在Windows家族、类Unix家族以及Linux上,而以Linux及Mac OS X为最主要的另类选择,直至今日。
大型机与嵌入式系统使用很多样化的操作系统。在服务器方面Linux、UNIX和WindowsServer占据了市场的大部分份额。在超级计算机方面,Linux取代Unix成为了第一大操作系统,截止2012年6月,世界超级计算机500强排名中基于Linux的超级计算机占据了462个席位,比率高达92%。随着智能手机的发展,Android和iOS已经成为目前最流行的两大手机操作系统。[1]
2012年,全球智能手机操作系统市场份额的变化情况相对稳定。智能手机操作系统市场一直被几个手机制造商巨头所控制,而安卓的垄断地位主要得益于三星智能手机在世界范围内所取得的巨大成功。2012年第三季度,安卓的市场份额高达74.8%,2011年则为57.4%。2013年第一季度,它的市场份额继续增加,达到75%。虽然 Android 占据领先,但是苹果 iOS 用户在应用上花费的时间则比 Android 的长。虽然在这方面 Android 的数字一度接近苹果,但是像 iPad 3 这样的设备发布之后,苹果的数字还是会进一步增长。Windows Phone 系统在 8.1 版发布后市场份额稳步提高,应用生态正在改善,众多必需应用不断更新,但是速度还略嫌迟缓。微软收购了诺基亚,发展了许多OEM厂商,并不断发布新机型试图扭转WP的不利局面,小有成效。
组成部分
操作系统理论研究者有时把操作系统分成四大部分:
驱动程序:最底层的、直接控制和监视各类硬件的部分,它们的职责是隐藏硬件的具体细节,并向其他部分提供一个抽象的、通用的接口。
内核:操作系统内核部分,通常运行在最高特权级,负责提供基础性、结构性的功能。
接口库:是一系列特殊的程序库,它们职责在于把系统所提供的基本服务包装成应用程序所能够使用的编程接口(API),是最靠近应用程序的部分。例如,GNU C运行期库就属于此类,它把各种操作系统的内部编程接口包装成ANSI C和POSIX编程接口的形式。
外围:是指操作系统中除以上三类以外的所有其他部分,通常是用于提供特定高级服务的部件。例如,在微内核结构中,大部分系统服务,以及UNIX/Linux中各种守护进程都通常被划归此列。
并不是所有的操作系统都严格包括这四大部分。例如,在早期的微软视窗操作系统中,各部分耦合程度很深,难以区分彼此。而在使用外核结构的操作系统中,则根本没有驱动程序的概念。
操作系统中四大部分的不同布局,也就形成了几种整体结构的分野。常见的结构包括:简单结构、层结构、微内核结构、垂直结构、和虚拟机结构。
内核结构编辑
内核是操作系统最基础的构件,因而,内核结构往往对操作系统的外部特性以及应用领域有着一定程度的影响。尽管随着理论和实践的不断演进,操作系统高层特性与内核结构之间的耦合有日趋缩小之势,但习惯上,内核结构仍然是操作系统分类之常用标准!
内核的结构可以分为单内核、微内核、混合内核、外内核等。
单内核(Monolithic kernel),又称为宏内核。单内核结构是操作系统中各内核部件杂然混居的形态,该结构于1960年代(亦有1950年代初之说,尚存争议),历史最长,是操作系统内核与外围分离时的最初形态。
微内核(Microkernel),又称为微核心。微内核结构是1980年代产生出来的较新的内核结构,强调结构性部件与功能性部件的分离。20世纪末,基于微内核结构,理论界中又发展出了超微内核与外内核等多种结构。尽管自1980年代起,大部分理论研究都集中在以微内核为首的“新兴”结构之上,然而,在应用领域之中,以单内核结构为基础的操作系统却一直占据着主导地位。
混合内核(Hybrid kernel)像微内核结构,只不过它的组件更多的在核心态中运行,以获得更快的执行速度。
外内核(Exokernel)的设计理念是尽可能的减少软件的抽象化,这使得开发者可以专注于硬件的抽象化。外核心的设计极为简化,它的目标是在于同时简化传统微内核的讯息传递机制,以及整块性核心的软件抽象层。
在众多常用操作系统之中,除了QNX和基于Mach的UNIX等个别系统外,几乎全部采用单内核结构,例如大部分的Unix、Linux,以及Windows(微软声称Windows NT是基于改良的微内核架构的,尽管理论界对此存有异议)。 微内核和超微内核结构主要用于研究性操作系统,还有一些嵌入式系统使用外核!
基于单内核的操作系统通常有着较长的历史渊源。例如,绝大部分UNIX的家族史都可上溯至1960年代。该类操作系统多数有着相对古老的设计和实现(例如某些UNIX中存在着大量1970年代、1980年代的代码)。另外,往往在性能方面略优于同一应用领域中采用其他内核结构的操作系统(但通常认为此种性能优势不能完全归功于单内核结构)!
主要功能
操作系统的主要功能是资源管理,程序控制和人机交互等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如中央处理器,主存储器,磁盘存储器,打印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如文件,程序库,知识库,系统软件和应用软件等。
操作系统位于底层硬件与用户之间,是两者沟通的桥梁。用户可以通过操作系统的用户界面,输入命令。操作系统则对命令进行解释,驱动硬件设备,实现用户要求。以现代观点而言,一个标准个人电脑的OS应该提供以下的功能:
进程管理(Processing management)
内存管理(Memory management)
文件系统(File system)
网络通讯(Networking)
安全机制(Security)
用户界面(User interface)
驱动程序(Device drivers)
资源管理
系统的设备资源和信息资源都是操作系统根据用户需求按一定的策略来进行分配和调度的。操作系统的存储管理就负责把内存单元分配给需要内存的程序以便让它执行,在程序执行结束后将它占用的内存单元收回以便再使用。对于提供虚拟存储的计算机系统,操作系统还要与硬件配合做好页面调度工作,根据执行程序的要求分配页面,在执行中将页面调入和调出内存以及回收页面等。
处理器管理或称处理器调度,是操作系统资源管理功能的另一个重要内容。在一个允许多道程序同时执行的系统里,操作系统会根据一定的策略将处理器交替地分配给系统内等待运行的程序。一道等待运行的程序只有在获得了处理器后才能运行。一道程序在运行中若遇到某个事件,例如启动外部设备而暂时不能继续运行下去,或一个外部事件的发生等等,操作系统就要来处理相应的事件,然后将处理器重新分配。
操作系统的设备管理功能主要是分配和回收外部设备以及控制外部设备按用户程序的要求进行操作等。对于非存储型外部设备,如打印机、显示器等,它们可以直接作为一个设备分配给一个用户程序,在使用完毕后回收以便给另一个需求的用户使用。对于存储型的外部设备,如磁盘、磁带等,则是提供存储空间给用户,用来存放文件和数据。存储性外部设备的管理与信息管理是密切结合的。
信息管理是操作系统的一个重要的功能,主要是向用户提供一个文件系统。一般说,一个文件系统向用户提供创建文件,撤销文件,读写文件,打开和关闭文件等功能。有了文件系统后,用户可按文件名存取数据而无需知道这些数据存放在哪里。这种做法不仅便于用户使用而且还有利于用户共享公共数据。此外,由于文件建立时允许创建者规定使用权限,这就可以保证数据的安全性。
程序控制
一个用户程序的执行自始至终是在操作系统控制下进行的。一个用户将他要解决的问题用某一种程序设计语言编写了一个程序后就将该程序连同对它执行的要求输入到计算机内,操作系统就根据要求控制这个用户程序的执行直到结束。操作系统控制用户的执行主要有以下一些内容:调入相应的编译程序,将用某种程序设计语言编写的源程序编译成计算机可执行的目标程序,分配内存储等资源将程序调入内存并启动,按用户指定的要求处理执行中出现的各种事件以及与操作员联系请示有关意外事件的处理等。
人机交互
操作系统的人机交互功能是决定计算机系统“友善性”的一个重要因素。人机交互功能主要靠可输入输出的外部设备和相应的软件来完成。可供人机交互使用的设备主要有键盘显示、鼠标、各种模式识别设备等。与这些设备相应的软件就是操作系统提供人机交互功能的部分。人机交互部分的主要作用是控制有关设备的运行和理解并执行通过人机交互设备传来的有关的各种命令和要求。
进程管理
不管是常驻程序或者应用程序,他们都以进程为标准执行单位。当年运用冯纽曼架构建造电脑时,每个中央处理器最多只能同时执行一个进程。早期的OS(例如DOS)也不允许任何程序打破这个限制,且DOS同时只有执行一个进程(虽然DOS自己宣称他们拥有终止并等待驻留(TSR)能力,可以部分且艰难地解决这问题)。现代的操作系统,即使只拥有一个CPU,也可以利用多进程(multitask)功能同时执行复数进程。进程管理指的是操作系统调整复数进程的功能。
由于大部分的电脑只包含一颗中央处理器,在单内核(Core)的情况下多进程只是简单迅速地切换各进程,让每个进程都能够执行,在多内核或多处理器的情况下,所有进程通过许多协同技术在各处理器或内核上转换。越多进程同时执行,每个进程能分配到的时间比率就越小。很多OS在遇到此问题时会出现诸如音效断续或鼠标跳格的情况(称做崩溃(Thrashing),一种OS只能不停执行自己的管理程序并耗尽系统资源的状态,其他使用者或硬件的程序皆无法执行)。进程管理通常实现了分时的概念,大部分的OS可以利用指定不同的特权等级(priority),为每个进程改变所占的分时比例。特权越高的进程,执行优先级越高,单位时间内占的比例也越高。交互式OS也提供某种程度的回馈机制,让直接与使用者交互的进程拥有较高的特权值。
内存管理
根据帕金森定律:“你给程序再多内存,程序也会想尽办法耗光”,因此程序员通常希望系统给他无限量且无限快的存储器。大部分的现代计算机存储器架构都是层次结构式的,最快且数量最少的暂存器为首,然后是高速缓存、存储器以及最慢的磁盘存储设备。而操作系统的存储器管理提供查找可用的记忆空间、配置与释放记忆空间以及交换存储器和低速存储设备的内含物……等功能。此类又被称做虚拟内存管理的功能大幅增加每个进程可获得的记忆空间(通常是4GB,即使实际上RAM的数量远少于这数目)。然而这也带来了微幅降低运行效率的缺点,严重时甚至也会导致进程崩溃。
存储器管理的另一个重点活动就是借由CPU的帮助来管理虚拟位置。如果同时有许多进程存储于记忆设备上,操作系统必须防止它们互相干扰对方的存储器内容(除非通过某些协定在可控制的范围下操作,并限制可访问的存储器范围)。分区存储器空间可以达成目标。每个进程只会看到整个存储器空间(从0到存储器空间的最大上限)被配置给它自己(当然,有些位置被操作系统保留而禁止访问)。CPU事先存了几个表以比对虚拟位置与实际存储器位置,这种方法称为标签页(paging)配置。
借由对每个进程产生分开独立的位置空间,操作系统也可以轻易地一次释放某进程所占据的所有存储器。如果这个进程不释放存储器,操作系统可以退出进程并将存储器自动释放。
虚拟内存
虚拟内存是计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续的可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。
用户接口
用户接口包括作业一级接口和程序一级接口。作业一级接口为了便于用户直接或间接地控制自己的作业而设置。它通常包括联机用户接口与脱机用户接口。程序一级接口是为用户程序在执行中访问系统资源而设置的,通常由一组系统调用组成。
在早期的单用户单任务操作系统(如DOS)中,每台计算机只有一个用户,每次运行一个程序,且次序不是很大,单个程序完全可以存放在实际内存中。这时虚拟内存并没有太大的用处。但随着程序占用存储器容量的增长和多用户多任务操作系统的出现,在程序设计时,在程序所需要的存储量与计算机系统实际配备的主存储器的容量之间往往存在着矛盾。例如,在某些低档的计算机中,物理内存的容量较小,而某些程序却需要很大的内存才能运行;而在多用户多任务系统中,多个用户或多个任务更新全部主存,要求同时执行独断程序。这些同时运行的程序到底占用实际内存中的哪一部分,在编写程序时是无法确定的,必须等到程序运行时才动态分配。[3]
用户界面
用户界面(User Interface,简称 UI,亦称使用者界面[1])是系统和用户之间进行交互和信息交换的媒介,它实现信息的内部形式与人类可以接受形式之间的转换。
用户界面是介于用户与硬件而设计彼此之间交互沟通相关软件,目的在使得用户能够方便有效率地去操作硬件以达成双向之交互,完成所希望借助硬件完成之工作,用户界面定义广泛,包含了人机交互与图形用户接口,凡参与人类与机械的信息交流的领域都存在着用户界面。用户和系统之间一般用面向问题的受限自然语言进行交互。目前有系统开始利用多媒体技术开发新一代的用户界面。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。